"With a little help from new friends": Boosting information cascades in social networks based on link injection

نویسندگان

  • Dimitrios Rafailidis
  • Alexandros Nanopoulos
  • Eleni Constantinou
چکیده

We investigate information cascades in the context of viral marketing applications. Recent research has identified that communities in social networks may hinder cascades. To overcome this problem, we propose a novel method for injecting social links in a social network, aiming at boosting the spread of information cascades. Unlike the proposed approach, existing link prediction methods do not consider the optimization of information cascades as an explicit objective. In our proposed method, the injected links are being predicted in a collaborative-filtering fashion, based on factorizing the adjacency matrix that represents the structure of the social network. Our method controls the number of injected links to avoid an “aggressive” injection scheme that may compromise the experience of users. We evaluate ocial networks atrix factorization the performance of the proposed method by examining real data sets from social networks and several additional factors. Our results indicate that the proposed scheme can boost information cascades in social networks and can operate as a “people recommendations” strategy complementary to currently applied methods that are based on the number of common neighbors (e.g., “friend of friend”) or on the similarity of user profiles. © 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

Crossing the Boundaries of Communities via Limited Link Injection for Information Diffusion In Social Networks

We propose a new link-injection method aiming at boosting the overall diffusion of information in social networks. Our approach is based on a diffusion-coverage score of the ability of each user to spread information over the network. Candidate links for injection are identified by a matrix factorization technique and link injection is performed by attaching links to users according to their sc...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

A Study on the Structure of Social Networks Bonds(A Comparative Study in Babol)

Ties and social bonds are considered as social capital and assets of the person and the person can be accessed at these links from the resources and support has great importance in sociology. The overall goal of this research was to study social networks and social ties of women and their husbands, living in Babol. Types of social networks(formal relationships, informal relationships) and the s...

متن کامل

Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks

In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Systems and Software

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2014